Autor: |
Ryan C. Bunge, Steven DeShong, Saad I. El-Zanati, Alexander Fischer, Dan P. Roberts, Lawrence Teng |
Jazyk: |
angličtina |
Rok vydání: |
2018 |
Předmět: |
|
Zdroj: |
Opuscula Mathematica, Vol 38, Iss 1, Pp 15-30 (2018) |
Druh dokumentu: |
article |
ISSN: |
1232-9274 |
DOI: |
10.7494/OpMath.2018.38.1.15 |
Popis: |
The paw graph consists of a triangle with a pendant edge attached to one of the three vertices. We obtain a multigraph by adding exactly one repeated edge to the paw. Now, let \(D\) be a directed graph obtained by orientating the edges of that multigraph. For 12 of the 18 possibilities for \(D\), we establish necessary and sufficient conditions on \(n\) for the existence of a \((K^{*}_{n},D)\)-design. Partial results are given for the remaining 6 possibilities for \(D\). |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|