A Comparison of Algorithms for Finding an Efficient Theme Park Tour
Autor: | Elizabeth L. Bouzarth, Richard J. Forrester, Kevin R. Hutson, Rahul Isaac, James Midkiff, Danny Rivers, Leonard J. Testa |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Journal of Applied Mathematics, Vol 2018 (2018) |
Druh dokumentu: | article |
ISSN: | 1110-757X 1687-0042 |
DOI: | 10.1155/2018/2453185 |
Popis: | The problem of efficiently touring a theme park so as to minimize the amount of time spent in queues is an instance of the Traveling Salesman Problem with Time-Dependent Service Times (TSP-TS). In this paper, we present a mixed-integer linear programming formulation of the TSP-TS and describe a branch-and-cut algorithm based on this model. In addition, we develop a lower bound for the TSP-TS and describe two metaheuristic approaches for obtaining good quality solutions: a genetic algorithm and a tabu search algorithm. Using test instances motivated by actual theme park data, we conduct a computational study to compare the effectiveness of our algorithms. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |