xcore: an R package for inference of gene expression regulators

Autor: Maciej Migdał, Takahiro Arakawa, Satoshi Takizawa, Masaaki Furuno, Harukazu Suzuki, Erik Arner, Cecilia Lanny Winata, Bogumił Kaczkowski
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: BMC Bioinformatics, Vol 24, Iss 1, Pp 1-12 (2023)
Druh dokumentu: article
ISSN: 1471-2105
DOI: 10.1186/s12859-022-05084-0
Popis: Abstract Background Elucidating the Transcription Factors (TFs) that drive the gene expression changes in a given experiment is a common question asked by researchers. The existing methods rely on the predicted Transcription Factor Binding Site (TFBS) to model the changes in the motif activity. Such methods only work for TFs that have a motif and assume the TF binding profile is the same in all cell types. Results Given the wealth of the ChIP-seq data available for a wide range of the TFs in various cell types, we propose that gene expression modeling can be done using ChIP-seq “signatures” directly, effectively skipping the motif finding and TFBS prediction steps. We present xcore, an R package that allows TF activity modeling based on ChIP-seq signatures and the user's gene expression data. We also provide xcoredata a companion data package that provides a collection of preprocessed ChIP-seq signatures. We demonstrate that xcore leads to biologically relevant predictions using transforming growth factor beta induced epithelial-mesenchymal transition time-courses, rinderpest infection time-courses, and embryonic stem cells differentiated to cardiomyocytes time-course profiled with Cap Analysis Gene Expression. Conclusions xcore provides a simple analytical framework for gene expression modeling using linear models that can be easily incorporated into differential expression analysis pipelines. Taking advantage of public ChIP-seq databases, xcore can identify meaningful molecular signatures and relevant ChIP-seq experiments.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje