Deep Batch Integration and Denoise of Single‐Cell RNA‐Seq Data

Autor: Lu Qin, Guangya Zhang, Shaoqiang Zhang, Yong Chen
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Advanced Science, Vol 11, Iss 29, Pp n/a-n/a (2024)
Druh dokumentu: article
ISSN: 2198-3844
20230893
DOI: 10.1002/advs.202308934
Popis: Abstract Numerous single‐cell transcriptomic datasets from identical tissues or cell lines are generated from different laboratories or single‐cell RNA sequencing (scRNA‐seq) protocols. The denoising of these datasets to eliminate batch effects is crucial for data integration, ensuring accurate interpretation and comprehensive analysis of biological questions. Although many scRNA‐seq data integration methods exist, most are inefficient and/or not conducive to downstream analysis. Here, DeepBID, a novel deep learning‐based method for batch effect correction, non‐linear dimensionality reduction, embedding, and cell clustering concurrently, is introduced. DeepBID utilizes a negative binomial‐based autoencoder with dual Kullback–Leibler divergence loss functions, aligning cell points from different batches within a consistent low‐dimensional latent space and progressively mitigating batch effects through iterative clustering. Extensive validation on multiple‐batch scRNA‐seq datasets demonstrates that DeepBID surpasses existing tools in removing batch effects and achieving superior clustering accuracy. When integrating multiple scRNA‐seq datasets from patients with Alzheimer's disease, DeepBID significantly improves cell clustering, effectively annotating unidentified cells, and detecting cell‐specific differentially expressed genes.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje