Autor: |
Dirk Langemann, Olesia Zavarzina |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Frontiers in Applied Mathematics and Statistics, Vol 10 (2024) |
Druh dokumentu: |
article |
ISSN: |
2297-4687 |
DOI: |
10.3389/fams.2024.1387012 |
Popis: |
The study deals with plastic and non-plastic sub-spaces A of the real-line ℝ with the usual Euclidean metric d. It investigates non-expansive bijections, proves properties of such maps, and demonstrates their relevance by hands of examples. Finally, it is shown that the plasticity property of a sub-space A contains at least two complementary questions, a purely geometric and a topological one. Both contribute essential aspects to the plasticity property and get more critical in higher dimensions and more abstract metric spaces. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|