IL-10 from dendritic cells but not from T regulatory cells protects against cisplatin-induced nephrotoxicity.
Autor: | Wei Wei Wang, Yamei Wang, Kang Li, Raghu Tadagavadi, William E Friedrichs, Madhusudhan Budatha, W Brian Reeves |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | PLoS ONE, Vol 15, Iss 9, p e0238816 (2020) |
Druh dokumentu: | article |
ISSN: | 1932-6203 39382273 |
DOI: | 10.1371/journal.pone.0238816 |
Popis: | Interleukin-10 (IL-10), a cytokine with anti-inflammatory effects, is produced by renal parenchymal cells and bone marrow derived cells. Both endogenous and exogenous IL-10 are protective in cisplatin-induced acute kidney injury. However, the source of endogenous IL-10 in cisplatin-induced nephrotoxicity is not clear. Bone marrow chimera experiments in IL10-KO mice indicated that bone marrow derived cells were the primary source of IL-10 in cisplatin nephrotoxicity. Cell specific deletion of IL-10 in T regulatory cells and dendritic cells was accomplished using Foxp3 and CD11c driven cre recombination in IL10flox/flox mice, respectively. Upon treatment with cisplatin, both the IL10flox/flox and the Foxp3YFP-Cre x IL10flox/flox mice developed similar degrees of kidney injury. However, mice with the dendritic cell deletion of IL-10 showed more severe structural and functional changes in the kidney compared to the IL10flox/flox mice. These results indicate that IL-10 from dendritic cells but not from T regulatory cells offers significant endogenous protection against cisplatin induced nephrotoxicity. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |