Autor: |
Yuehua Li, Junxiang Yan, Xueqian Guo, Xiaochen Wang, Fenxia Liu, Boyang Cao |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
BMC Microbiology, Vol 22, Iss 1, Pp 1-12 (2022) |
Druh dokumentu: |
article |
ISSN: |
1471-2180 |
DOI: |
10.1186/s12866-022-02435-y |
Popis: |
Abstract Background Vibrio cholerae, a Gram-negative bacterium, is highly motile owing to the presence of a single polar flagellum. The global anaerobiosis response regulator, ArcA regulates the expression of virulence factors and enhance biofilm formation in V. cholerae. However, the function of ArcA for the motility of V. cholerae is yet to be elucidated. CytR, which represses nucleoside uptake and catabolism, is known to play a chief role in V. cholerae pathogenesis and flagellar synthesis but the mechanism that CytR influences motility is unclear. Results In this study, we found that the ΔarcA mutant strain exhibited higher motility than the WT strain due to ArcA directly repressed flrA expression. We further discovered that CytR directly enhanced fliK expression, which explained why the ΔcytR mutant strain was retarded in motility. On the other hand, cytR was a direct ArcA target and cytR expression was directly repressed by ArcA. As expected, cytR expression was down-regulated. Conclusions Overall, ArcA plays a critical role in V. cholerae motility by regulating flrA expression directly and fliK indirectly in the manner of cytR. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|