Autor: |
Francisco C. M. Rodrigues, Mateus Espadoto, Roberto Hirata, Alexandru C. Telea |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Information, Vol 10, Iss 9, p 280 (2019) |
Druh dokumentu: |
article |
ISSN: |
2078-2489 |
DOI: |
10.3390/info10090280 |
Popis: |
Visualizing decision boundaries of machine learning classifiers can help in classifier design, testing and fine-tuning. Decision maps are visualization techniques that overcome the key sparsity-related limitation of scatterplots for this task. To increase the trustworthiness of decision map use, we perform an extensive evaluation considering the dimensionality-reduction (DR) projection techniques underlying decision map construction. We extend the visual accuracy of decision maps by proposing additional techniques to suppress errors caused by projection distortions. Additionally, we propose ways to estimate and visually encode the distance-to-decision-boundary in decision maps, thereby enriching the conveyed information. We demonstrate our improvements and the insights that decision maps convey on several real-world datasets. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|