Autor: |
Rosa Lo Frano, Salvatore Angelo Cancemi, Piotr Darnowski, Riccardo Ciolini, Sandro Paci |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Energies, Vol 14, Iss 15, p 4394 (2021) |
Druh dokumentu: |
article |
ISSN: |
1996-1073 |
DOI: |
10.3390/en14154394 |
Popis: |
Today, 46% of operating Nuclear Power Plants (NPP) have a lifetime between 31 and 40 years, while 19% have been in operation for more than 40 years. Long Term Operation (LTO) is an urgent requirement for all of the nuclear industry. The aim of this study is to assess the performance of a reactor pressure vessel (RPV) subjected to a station blackout (SBO) event. Alterations suffered by the material properties and creep at elevated temperatures are considered. In this study, coupling between MELCOR and Finite Element Method (FEM) codes is carried out. In the Finite Element (FE) model, the combined effects of ageing and creep are implemented through degraded material properties and a viscoplastic model. The reliability of the model is validated by comparing the FOREVER/C1 experimental results. The results show that the RPV lower head bends downwards with a maximum radial expansion of about 260 mm and RPV thermomechanical properties are reduced by more than 50% at high temperatures. The effects of ageing, creep and long heat-up strongly affect the resistance of the RPV system until the point of compromising it in the absence of/delayed emergency intervention. Aged RPV at end-of-life may collapse earlier, and in less time, with the same accidental conditions. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|