Reduction of Homogeneous Pseudo-Kähler Structures by One-Dimensional Fibers

Autor: José Luis Carmona Jiménez, Marco Castrillón López
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Axioms, Vol 9, Iss 3, p 94 (2020)
Druh dokumentu: article
ISSN: 2075-1680
DOI: 10.3390/axioms9030094
Popis: We study the reduction procedure applied to pseudo-Kähler manifolds by a one dimensional Lie group acting by isometries and preserving the complex tensor. We endow the quotient manifold with an almost contact metric structure. We use this fact to connect pseudo-Kähler homogeneous structures with almost contact metric homogeneous structures. This relation will have consequences in the class of the almost contact manifold. Indeed, if we choose a pseudo-Kähler homogeneous structure of linear type, then the reduced, almost contact homogeneous structure is of linear type and the reduced manifold is of type C5⊕C6⊕C12 of Chinea-González classification.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje