Solitary Wave Solutions of a Hyperelastic Dispersive Equation

Autor: Yuheng Jiang, Yu Tian, Yao Qi
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Mathematics, Vol 12, Iss 4, p 564 (2024)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math12040564
Popis: This paper explores solitary wave solutions arising in the deformations of a hyperelastic compressible plate. Explicit traveling wave solution expressions with various parameters for the hyperelastic compressible plate are obtained and visualized. To analyze the perturbed equation, we employ geometric singular perturbation theory, Melnikov methods, and invariant manifold theory. The solitary wave solutions of the hyperelastic compressible plate do not persist under small perturbations for wave speed c>−βk2. Further exploration of nonlinear models that accurately depict the persistence of solitary wave solution on the significant physical processes under the K-S perturbation is recommended.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje