Autor: |
Zhaojuan Zheng, Xia Wang, Liming Ouyang, Wenxia Chen, Lixin Zhang, Yulin Cao |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Antioxidants, Vol 12, Iss 7, p 1334 (2023) |
Druh dokumentu: |
article |
ISSN: |
2076-3921 |
DOI: |
10.3390/antiox12071334 |
Popis: |
Human umbilical cord mesenchymal stem cells (hUC-MSCs) are broadly applied in clinical treatment due to convenient accessibility, low immunogenicity, and the absence of any ethical issues involved. However, the microenvironment of inflammatory tissues may cause oxidative stress and induce senescence in transplanted hUC-MSCs, which will further reduce the proliferation, migration ability, and the final therapeutic effects of hUC-MSCs. Beta-nicotinamide mononucleotide (NMN) and coenzyme Q10 (CoQ10) are famous antioxidants and longevity medicines that could reduce intracellular reactive oxygen species levels by different mechanisms. In this study, hUC-MSCs were treated in vitro with NMN and CoQ10 to determine if they could reduce oxidative stress caused by hydrogen peroxide (H2O2) and recover cell functions. The effects of NMN and CoQ10 on the cell proliferation, the mRNA levels of the inflammatory cytokine TNFα and the anti-inflammatory cytokine IL10, and the differentiation and cell migration ability of hUC-MSCs before and after H2O2 treatment were investigated. The findings revealed that NMN and CoQ10 reduced H2O2-induced senescence and increased hUC-MSCs’ proliferation in the late phase as passage 12 and later. The TNFα mRNA level of hUC-MSCs induced by H2O2 was significantly decreased after antioxidant treatment. NMN and CoQ10 all reduced the adipogenic differentiation ability of hUC-MSCs. CoQ10 improved the chondrogenic differentiation ability of hUC-MSCs. Furthermore, NMN was found to significantly enhance the migration ability of hUC-MSCs. Transcriptomic analysis revealed that NMN and CoQ10 both increased DNA repair ability and cyclin expression and downregulated TNF and IL-17 inflammatory signaling pathways, thereby contributing to the proliferative promotion of senecent stem cells and resistance to oxidative stress. These findings suggest that antioxidants can improve the survival and efficacy of hUC-MSCs in stem cell therapy for inflammation-related diseases. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|