Weight and volume estimation of single and occluded tomatoes using machine vision

Autor: Innocent Nyalala, Cedric Okinda, Qi Chao, Peter Mecha, Tchalla Korohou, Zuo Yi, Samuel Nyalala, Zhang Jiayu, Liu Chao, Chen Kunjie
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: International Journal of Food Properties, Vol 24, Iss 1, Pp 818-832 (2021)
Druh dokumentu: article
ISSN: 1094-2912
1532-2386
10942912
DOI: 10.1080/10942912.2021.1933024
Popis: The fundamental characteristics of agricultural products are appearance, size, and weight, which affect their market value, consumer preference, and choice. Thus, food and agricultural industries seek rapid, simple, and nondestructive approaches to assess real-time measurements at the post-harvest stage before packaging for the consumer market. While sorting and grading may be performed by humans, it is unreliable, time-consuming, complicated, subjective, onerous, expensive, and easily influenced by surroundings. Therefore, an astute sorting and grading method for tomato fruit is required. We evaluated two tomato configurations on a conveyor belt: single tomatoes (no occlusion) and multi-tomatoes (partially occluded). We used polygon approximation for concave and convex point extraction algorithms to segment the occluded tomatoes. We developed seven models for regression using single-tomato image features. The Bayesian regularization artificial neural network outranked all the trained models in weight estimation with a root-mean-square error (RMSE) of 1.468 g and R2 of 0.971. For volume estimation, the RBF SVM had the best performance with R2 of 0.982 and RMSE of 1.2683 cm3. It is feasible to implement a proposed system as a noninvasive in-line sorting technique for tomatoes.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje