MEK1 inhibits cardiac PPARα activity by direct interaction and prevents its nuclear localization.

Autor: Hamid el Azzouzi, Stefanos Leptidis, Meriem Bourajjaj, Marc van Bilsen, Paula A da Costa Martins, Leon J De Windt
Jazyk: angličtina
Rok vydání: 2012
Předmět:
Zdroj: PLoS ONE, Vol 7, Iss 6, p e36799 (2012)
Druh dokumentu: article
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0036799
Popis: BACKGROUND: The response of the postnatal heart to growth and stress stimuli includes activation of a network of signal transduction cascades, including the stress activated protein kinases such as p38 mitogen-activated protein kinase (MAPK), c-Jun NH2-terminal kinase (JNK) and the extracellular signal-regulated kinase (ERK1/2) pathways. In response to increased workload, the mitogen-activated protein kinase kinase (MAPKK) MEK1 has been shown to be active. Studies embarking on mitogen-activated protein kinase (MAPK) signaling cascades in the heart have indicated peroxisome-proliferators activated-receptors (PPARs) as downstream effectors that can be regulated by this signaling cascade. Despite the importance of PPARα in controlling cardiac metabolism, little is known about the relationship between MAPK signaling and cardiac PPARα signaling. METHODOLOGY/PRINCIPAL FINDING: Using co-immunoprecipitation and immunofluorescence approaches we show a complex formation of PPARα with MEK1 and not with ERK1/2. Binding of PPARα to MEK1 is mediated via a LXXLL motif and results in translocation from the nucleus towards the cytoplasm, hereby disabling the transcriptional activity of PPARα. Mice subjected to voluntary running-wheel exercise showed increased cardiac MEK1 activation and complex formation with PPARα, subsequently resulting in reduced PPARα activity. Inhibition of MEK1, using U0126, blunted this effect. CONCLUSION: Here we show that activation of the MEK1-ERK1/2 pathway leads to specific inhibition of PPARα transcriptional activity. Furthermore we show that this inhibitory effect is mediated by MEK1, and not by its downstream effector kinase ERK1/2, through a mechanism involving direct binding to PPARα and subsequent stimulation of PPARα export from the nucleus.
Databáze: Directory of Open Access Journals