The Physiology of Postharvest Tea (Camellia sinensis) Leaves, According to Metabolic Phenotypes and Gene Expression Analysis
Autor: | Shuang Mei, Zizi Yu, Jiahao Chen, Peng Zheng, Binmei Sun, Jiaming Guo, Shaoqun Liu |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Molecules, Vol 27, Iss 5, p 1708 (2022) |
Druh dokumentu: | article |
ISSN: | 1420-3049 82964068 |
DOI: | 10.3390/molecules27051708 |
Popis: | Proper postharvest storage preserves horticultural products, including tea, until they can be processed. However, few studies have focused on the physiology of ripening and senescence during postharvest storage, which affects the flavor and quality of tea. In this study, physiological and biochemical indexes of the leaves of tea cultivar ‘Yinghong 9′ preserved at a low temperature and high relative humidity (15–18 °C and 85–95%, PTL) were compared to those of leaves stored at ambient conditions (24 ± 2 °C and relative humidity of 65% ± 5%, UTL). Water content, chromatism, chlorophyll fluorescence, and key metabolites (caffeine, theanine, and catechins) were analyzed over a period of 24 h, and volatilized compounds were determined after 24 h. In addition, the expression of key biosynthesis genes for catechin, caffeine, theanine, and terpene were quantified. The results showed that water content, chromatism, and chlorophyll fluorescence of preserved leaves were more similar to fresh tea leaves than unpreserved tea leaves. After 24 h, the content of aroma volatiles and caffeine significantly increased, while theanine decreased in both groups. Multiple catechin monomers showed distinct changes within 24 h, and EGCG was significantly higher in preserved tea. The expression levels of CsFAS and CsTSI were consistent with the content of farnesene and theanine, respectively, but TCS1 and TCS2 expression did not correlate with caffeine content. Principal component analysis considered results from multiple indexes and suggested that the freshness of PTL was superior to that of UTL. Taken together, preservation conditions in postharvest storage caused a series of physiological and metabolic variations of tea leaves, which were different from those of unpreserved tea leaves. Comprehensive evaluation showed that the preservation conditions used in this study were effective at maintaining the freshness of tea leaves for 2–6 h. This study illustrates the metabolic changes that occur in postharvest tea leaves, which will provide a foundation for improvements to postharvest practices for tea leaves. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |