Autor: |
Louis R. Joslyn, JoAnne L. Flynn, Denise E. Kirschner, Jennifer J. Linderman |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 12, Iss 1, Pp 1-11 (2022) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-022-24516-8 |
Popis: |
Abstract Some persistent infections provide a level of immunity that protects against reinfection with the same pathogen, a process referred to as concomitant immunity. To explore the phenomenon of concomitant immunity during Mycobacterium tuberculosis infection, we utilized HostSim, a previously published virtual host model of the immune response following Mtb infection. By simulating reinfection scenarios and comparing with data from non-human primate studies, we propose a hypothesis that the durability of a concomitant immune response against Mtb is intrinsically tied to levels of tissue resident memory T cells (Trms) during primary infection, with a secondary but important role for circulating Mtb-specific T cells. Further, we compare HostSim reinfection experiments to observational TB studies from the pre-antibiotic era to predict that the upper bound of the lifespan of resident memory T cells in human lung tissue is likely 2–3 years. To the authors’ knowledge, this is the first estimate of resident memory T-cell lifespan in humans. Our findings are a first step towards demonstrating the important role of Trms in preventing disease and suggest that the induction of lung Trms is likely critical for vaccine success. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|