Orthant spanning simplexes with minimal volume

Autor: Michele Elia
Jazyk: angličtina
Rok vydání: 2003
Předmět:
Zdroj: International Journal of Mathematics and Mathematical Sciences, Vol 2003, Iss 63, Pp 3995-4006 (2003)
Druh dokumentu: article
ISSN: 0161-1712
1687-0425
01611712
DOI: 10.1155/S0161171203210401
Popis: A geometry problem is to find an (n−1)-dimensional simplex in ℝn of minimal volume with vertices on the positive coordinate axes, and constrained to pass through a given point A in the first orthant. In this paper, it is shown that the optimal simplex is identified by the only positive root of a (2n−1)-degree polynomial pn(t). The roots of pn(t) cannot be expressed using radicals when the coordinates of A are transcendental over ℚ, for 3≤n≤15, and supposedly for every n. Furthermore, limited to dimension 3, parametric representations are given to points A to which correspond triangles of minimal area with integer vertex coordinates and area.
Databáze: Directory of Open Access Journals