Vacuum joints of CuCrZr alloy for high-heat-load photon absorber

Autor: Yongjun Li, Limin Jin, Wanqian Zhu, Song Xue, Min Zhang, Shuai Wu
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Journal of Synchrotron Radiation, Vol 29, Iss 2, Pp 363-368 (2022)
Druh dokumentu: article
ISSN: 1600-5775
16005775
DOI: 10.1107/S160057752101273X
Popis: A photon absorber, as a critical component of a synchrotron front-end, is mainly used to handle high-heat-load synchrotron radiation. It is mostly made of dispersion strengthened copper or CuCrZr which can retain high performance at elevated temperatures. Joining processes for vacuum, including tungsten inert gas welding (TIG) and electron beam welding (EBW), are novel ways to make a long photon absorber from two short ones and reduce power density. The mechanical properties of TIG joints and EBW joints of CuCrZr to the same material are obtained by tensile tests at 20°C, 100°C, 200°C, 300°C and 400°C. Testing results indicate that the tensile strength and yield strength of both vacuum joints decline as temperature increases. Compared with TIG joints, EBW joints have higher strength, better ductility and a more stable performance. An engineering conservative acceptance criteria of the vacuum joints is created by the polynomial fitting method. A novel welded photon absorber with a total length of 600 mm has been successfully designed and manufactured. Finite-element analysis by ANSYS shows that the maximum temperature, equivalent stress and strain are only 31.5%, 36.2% and 1.3%, respectively, of the corresponding thresholds. The welded photon absorbers with EBW joints will be applicable in the highest-heat-load front-end in the Shanghai Synchrotron Radiation Facility Phase-II beamline project.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje