Low-Cost Dual-Frequency GNSS Receivers and Antennas for Surveying in Urban Areas
Autor: | Veton Hamza, Bojan Stopar, Oskar Sterle, Polona Pavlovčič-Prešeren |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Sensors, Vol 23, Iss 5, p 2861 (2023) |
Druh dokumentu: | article |
ISSN: | 1424-8220 58272798 |
DOI: | 10.3390/s23052861 |
Popis: | Low-cost dual-frequency global navigation satellite system (GNSS) receivers have recently been tested in various positioning applications. Considering that these sensors can now provide high positioning accuracy at a lower cost, they can be considered an alternative to high-quality geodetic GNSS devices. The main objectives of this work were to analyze the differences between geodetic and low-cost calibrated antennas on the quality of observations from low-cost GNSS receivers and to evaluate the performance of low-cost GNSS devices in urban areas. In this study, a simple RTK2B V1 board u-blox ZED-F9P (Thalwil, Switzerland) was tested in combination with a low-cost calibrated and geodetic antenna in open-sky and adverse conditions in urban areas, while a high-quality geodetic GNSS device was used as a reference for comparison. The results of the observation quality check show that low-cost GNSS instruments have a lower carrier-to-noise ratio (C/N0) than geodetic instruments, especially in the urban areas where the difference is larger and in favor of the geodetic GNSS instruments. The root-mean-square error (RMSE) of the multipath error in the open sky is twice as high for low-cost as for geodetic instruments, while this difference is up to four times greater in urban areas. The use of a geodetic GNSS antenna does not show a significant improvement in the C/N0 and multipath of low-cost GNSS receivers. However, the ambiguity fix ratio is larger when geodetic antennas are used, with a difference of 1.5% and 18.4% for the open-sky and urban conditions, respectively. It should be noted that float solutions may become more evident when low-cost equipment is used, especially for short sessions and in urban areas with more multipath. In relative positioning mode, low-cost GNSS devices were able to provide horizontal accuracy lower than 10 mm in urban areas in 85% of sessions, while the vertical and spatial accuracy was lower than 15 mm in 82.5% and 77.5% of the sessions, respectively. In the open sky, low-cost GNSS receivers achieve a horizontal, vertical, and spatial accuracy of 5 mm for all sessions considered. In RTK mode, positioning accuracy varies between 10–30 mm in the open-sky and urban areas, while better performance is demonstrated for the former. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |