Autor: |
Annika Homburg, Christian H. Weiß, Layth C. Alwan, Gabriel Frahm, Rainer Göb |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Econometrics, Vol 7, Iss 3, p 30 (2019) |
Druh dokumentu: |
article |
ISSN: |
2225-1146 |
DOI: |
10.3390/econometrics7030030 |
Popis: |
In forecasting count processes, practitioners often ignore the discreteness of counts and compute forecasts based on Gaussian approximations instead. For both central and non-central point forecasts, and for various types of count processes, the performance of such approximate point forecasts is analyzed. The considered data-generating processes include different autoregressive schemes with varying model orders, count models with overdispersion or zero inflation, counts with a bounded range, and counts exhibiting trend or seasonality. We conclude that Gaussian forecast approximations should be avoided. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|