Evaluating Approximate Point Forecasting of Count Processes

Autor: Annika Homburg, Christian H. Weiß, Layth C. Alwan, Gabriel Frahm, Rainer Göb
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Econometrics, Vol 7, Iss 3, p 30 (2019)
Druh dokumentu: article
ISSN: 2225-1146
DOI: 10.3390/econometrics7030030
Popis: In forecasting count processes, practitioners often ignore the discreteness of counts and compute forecasts based on Gaussian approximations instead. For both central and non-central point forecasts, and for various types of count processes, the performance of such approximate point forecasts is analyzed. The considered data-generating processes include different autoregressive schemes with varying model orders, count models with overdispersion or zero inflation, counts with a bounded range, and counts exhibiting trend or seasonality. We conclude that Gaussian forecast approximations should be avoided.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje