Synthesis, Antitumor Evaluation, Molecular Modeling and Quantitative Structure–Activity Relationship (QSAR) of Novel 2-[(4-Amino-6-N-substituted-1,3,5-triazin-2-yl)methylthio]-4-chloro-5-methyl-N-(1H-benzo[d]imidazol-2(3H)-ylidene)Benzenesulfonamides

Autor: Łukasz Tomorowicz, Jarosław Sławiński, Beata Żołnowska, Krzysztof Szafrański, Anna Kawiak
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: International Journal of Molecular Sciences, Vol 21, Iss 8, p 2924 (2020)
Druh dokumentu: article
ISSN: 1422-0067
1661-6596
DOI: 10.3390/ijms21082924
Popis: A series of novel 2-[(4-amino-6-R2-1,3,5-triazin-2-yl)methylthio]-4-chloro-5-methyl-N-(5-R1-1H-benzo[d]imidazol-2(3H)-ylidene)benzenesulfonamides 6–49 was synthesized by the reaction of 5-substituted ethyl 2-{5-R1-2-[N-(5-chloro-1H-benzo[d]imidazol-2(3H)-ylidene)sulfamoyl]-4-methylphenylthio}acetate with appropriate biguanide hydrochlorides. The most active compounds, 22 and 46, showed significant cytotoxic activity and selectivity against colon (HCT-116), breast (MCF-7) and cervical cancer (HeLa) cell lines (IC50: 7–11 µM; 15–24 µM and 11–18 µM), respectively. Further QSAR (Quantitative Structure–Activity Relationships) studies on the cytotoxic activity of investigated compounds toward HCT-116, MCF-7 and HeLa were performed by using different topological (2D) and conformational (3D) molecular descriptors based on the stepwise multiple linear regression technique (MLR). The QSAR studies allowed us to make three statistically significant and predictive models for them. Moreover, the molecular docking studies were carried out to evaluate the possible binding mode of the most active compounds, 22 and 46, within the active site of the MDM2 protein.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje