Maize ZmFNSI Homologs Interact with an NLR Protein to Modulate Hypersensitive Response

Autor: Yu-Xiu Zhu, Chunxia Ge, Shijun Ma, Xiao-Ying Liu, Mengjie Liu, Yang Sun, Guan-Feng Wang
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: International Journal of Molecular Sciences, Vol 21, Iss 7, p 2529 (2020)
Druh dokumentu: article
ISSN: 1422-0067
1661-6596
DOI: 10.3390/ijms21072529
Popis: Nucleotide binding, leucine-rich-repeat (NLR) proteins are the major class of resistance (R) proteins used by plants to defend against pathogen infection. The recognition between NLRs and their cognate pathogen effectors usually triggers a rapid localized cell death, termed the hypersensitive response (HR). Flavone synthase I (FNSI) is one of the key enzymes in the flavone biosynthesis pathway. It also displays salicylic acid (SA) 5-hydroxylase (S5H) activity. A close homolog of FNSI/S5H displays SA 3-hydroxylase (S3H) activity. Both FNSI/S5H and S3H play important roles in plant innate immunity. However, the underlying molecular mechanisms and the relationship between S5H and S3H with the NLR-mediated HR are not known in any plant species. In this study, we identified three genes encoding ZmFNSI-1, ZmFNSI-2 and ZmS3H that are significantly upregulated in a maize line carrying an autoactive NLR Rp1-D21 mutant. Functional analysis showed that ZmFNSI-1 and ZmFNSI-2, but not ZmS3H, suppressed HR conferred by Rp1-D21 and its signaling domain CCD21 when transiently expressed in N. benthamiana. ZmFNSI-1 and ZmFNSI-2 physically interacted with CCD21. Furthermore, ZmFNSI-1 and ZmFNSI-2 interacted with HCT, a key enzyme in lignin biosynthesis pathway, which can also suppress Rp1-D21-mediated HR. These results lay the foundation for the further functional analysis of the roles of FNSI in plant innate immunity.
Databáze: Directory of Open Access Journals