Popis: |
This paper investigates the electromagnetic fields being scattered by a metal spherical object in a vacuum environment, providing a numerical implementation of the obtained analytical results. A time-harmonic magnetic dipole source, far enough, emits the incident field at low frequencies, oriented arbitrarily in the three-dimensional space. The aim is to find a detailed solution to the scattering problem at spherical coordinates, which is useful for data inversion. Based on the theory of low frequencies, the Maxwell-type problem is transformed into Laplace’s or Poisson’s interconnected equations, accompanied by the proper boundary conditions on the perfectly conducting sphere and the radiation conditions at infinity, which are solved gradually. Broadly, the static and the first three dynamic terms are sufficient, while the terms of a higher order are negligible, which is confirmed by the field graphical representation. |