Autor: |
Jonatas Lobato Duarte, Leonardo Delello Di Filippo, Tais de Cássia Ribeiro, Ana Carolina de Jesus Silva, Lorane Izabel da Silva Hage-Melim, Stéphane Duchon, David Carrasco, Mara Cristina Pinto, Vincent Corbel, Marlus Chorilli |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Pharmaceutics, Vol 16, Iss 8, p 1096 (2024) |
Druh dokumentu: |
article |
ISSN: |
1999-4923 |
DOI: |
10.3390/pharmaceutics16081096 |
Popis: |
Aedes mosquito-borne diseases remain a significant global health threat, necessitating effective control strategies. This study introduces monoterpenes-based nanohydrogels for potential use as repellents against Aedes aegypti, the primary dengue vector worldwide. We formulated hydrogels using cymene- and myrcene-based nanoemulsions with different polymers: chitosan, carboxymethylcellulose (CMC), and carbopol®. Our evaluations of rheological, texture, and bioadhesive properties identified CMC hydrogel as the most promising gelling agent for topical application, exhibiting sustained monoterpene release over 12 h with low skin permeation and high retention in the stratum corneum. Myrcene-loaded CMC hydrogel achieved a 57% feeding deterrence compared to 47% with cymene hydrogel in the mosquito membrane-feeding model. Molecular docking studies revealed interactions between myrcene and an essential amino acid (Ile116) in the Ae. aegypti odorant-binding protein 22 (AeOBP22), corroborating its higher repellent efficacy. These findings suggest that myrcene-loaded CMC hydrogels offer a promising, minimally invasive strategy for personal protection against Ae. aegypti and warrant further investigation to optimize monoterpene concentrations for vector control. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|