Nonlinear nonhomogeneous Dirichlet problems with singular and convection terms

Autor: Nikolaos S. Papageorgiou, Youpei Zhang
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Boundary Value Problems, Vol 2020, Iss 1, Pp 1-21 (2020)
Druh dokumentu: article
ISSN: 1687-2770
DOI: 10.1186/s13661-020-01450-0
Popis: Abstract We consider a nonlinear Dirichlet problem driven by a general nonhomogeneous differential operator and with a reaction exhibiting the combined effects of a parametric singular term plus a Carathéodory perturbation f ( z , x , y ) $f(z,x,y)$ which is only locally defined in x ∈ R $x \in {\mathbb {R}} $ . Using the frozen variable method, we prove the existence of a positive smooth solution, when the parameter is small.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje