Sentiment Analysis Regarding Candidate Presidential 2024 Using Support Vector Machine Backpropagation Based

Autor: Atmaja Jalu Narendra Kisma, Primandani Arsi, Pungkas Subarkah
Jazyk: English<br />Indonesian
Rok vydání: 2024
Předmět:
Zdroj: JTAM (Jurnal Teori dan Aplikasi Matematika), Vol 8, Iss 1, Pp 96-108 (2024)
Druh dokumentu: article
ISSN: 2597-7512
2614-1175
DOI: 10.31764/jtam.v8i1.17294
Popis: This research has the potential to make an important contribution to the development of computationally-based sentiment analysis, particularly in the political context. Anies Baswedan, Ganjar Pranowo, and Prabowo Subianto, three candidates for the presidency of Indonesia, are examined using a Backpropagation-based Support Vector Machine (SVM) methodology in this study. This approach is used to categorize emotions into three groups: neutral, adverse, and favorable. Between July 1 and July 30, 2023, data on tweets mentioning the three presidential contenders was gathered. After processing the data, SVM was used while lowering the backpropagation process. The study's findings demonstrate that the performance of the model in determining public sentiment is greatly enhanced by the application of backpropagation-based SVM techniques. For each presidential contender, the evaluation was conducted using the f1 score, recall, and precision metrics. The evaluation's findings indicate that while the model struggles to distinguish between favorable and negative feelings toward particular presidential contenders, it performs better when categorizing neutral feelings. The SVM model is more accurately able to identify popular sentiment toward the three presidential candidates when the backpropagation approach is used. The results of the sentiment analysis are also represented by word clouds for each presidential contender, giving an intuitive sense of the words that are frequently used in public discourse. This study sheds light on the possibilities of using Twitter data to analyze political sentiment using the backpropagation-based SVM algorithm.
Databáze: Directory of Open Access Journals