Cross entropy-based memetic algorithms: An application study over the tool switching problem

Autor: Jhon Edgar Amaya, Carlos Cotta, AntonioJ. Fernández-Leiva
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: International Journal of Computational Intelligence Systems, Vol 6, Iss 3 (2013)
Druh dokumentu: article
ISSN: 18756891
25868403
1875-6883
DOI: 10.1080/18756891.2013.792542
Popis: This paper presents a parameterized schema for building memetic algorithms based on cross-entropy (CE) methods. This novel schema is general in nature, and features multiple probability mass functions and Lamarckian learning. The applicability of the approach is assessed by considering the Tool Switching Problem, a complex combinatorial problem in the field of Flexible Manufacturing Systems. An exhaustive evaluation (including techniques ranging from local search and evolutionary algorithms to constructive methods) provides evidence of the effectiveness of CE-based memetic algorithms.
Databáze: Directory of Open Access Journals