Prediction of 316 stainless steel low-cycle fatigue life based on machine learning

Autor: Hongyan Duan, Mengjie Cao, Lin Liu, Shunqiang Yue, Hong He, Yingjian Zhao, Zengwang Zhang, Yang liu
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Scientific Reports, Vol 13, Iss 1, Pp 1-9 (2023)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-023-33354-1
Popis: Abstract The low-cycle fatigue life of 316 stainless steel is a significant basis for safety assessment. Usually, many factors affect the low-cycle fatigue life of stainless steel, and the relationship between the influencing factors and fatigue life is complicated and nonlinear. Therefore, it is hard to predict fatigue life using the traditional empirical formula. Based on this, a machine learning algorithm is proposed. In this paper, based on the large amount of existing experimental data, machine learning methods are used to predict the low circumferential fatigue life of 316 stainless steel. The results show that the prediction accuracy of nu-SVR and ELM models is high and can meet engineering needs.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje