Autor: |
Chengxiang Tian, Juwei Wu, Zheng Ma, Bo Li, Xu Zhang, Xiaotao Zu, Xia Xiang, Sean Li |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Energy Reports, Vol 6, Iss , Pp 172-180 (2020) |
Druh dokumentu: |
article |
ISSN: |
2352-4847 |
DOI: |
10.1016/j.egyr.2020.06.007 |
Popis: |
For lithium–sulfur batteries, 3D cathodes might be of interest for containing the active material and trapping the polysulfides during cycling, owing to their binder-free and freestanding features. In this work, the MoS2 grown on the 3D structured Carbon Cloth (CC@MoS2) is firstly used to fabricate the Li–S battery and the sulfur loading can be freely tuned by adjusting thermal annealing time at 200 °C. A two-step melt-diffusion strategy is reported for fabrication of cathodes, which involves in melting and diffusion of sulfur covered by CC@MoS2 composites instead of dissolution of sulfur in the toxic organic solvents. Compared with the non-polar carbon cloth, the CC@MoS2 composites exhibit better adsorption capacity for polysulfides due to more edge active sites, which could effectively facilitate polysulfide redox kinetics. The SEM images of the CC@MoS2 cathode after 300 cycles show that MoS2 can still maintain the nanosheet morphology. After 300 cycles at 0.5 C, the CC@MoS2 cathodes loaded with 2 mg sulfur exhibit a better reversible capacity of 698 mA h g−1 compared with CC@MoS2 loaded with 1 mg sulfur (604 mA h g−1) and CC@MoS2 loaded with 4 mg sulfur (420 mA h g−1). This work proposes an environmentally friendly method to fabricate the lithium–sulfur battery cathode material and the sulfur loading can be freely adjusted. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|