Autor: |
Keita Wagatsuma, Iain S. Koolhof, Reiko Saito |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Viruses, Vol 15, Iss 9, p 1914 (2023) |
Druh dokumentu: |
article |
ISSN: |
1999-4915 |
DOI: |
10.3390/v15091914 |
Popis: |
In this study, we aimed to characterize the nonlinear and multidelayed effects of multiple meteorological drivers on human respiratory syncytial virus (HRSV) infection epidemics in Japan. The prefecture-specific weekly time-series of the number of newly confirmed HRSV infection cases and multiple meteorological variables were collected for 47 Japanese prefectures from 1 January 2014 to 31 December 2019. We combined standard time-series generalized linear models with distributed lag nonlinear models to determine the exposure–lag–response association between the incidence relative risks (IRRs) of HRSV infection and its meteorological drivers. Pooling the 2-week cumulative estimates showed that overall high ambient temperatures (22.7 °C at the 75th percentile compared to 16.3 °C) and high relative humidity (76.4% at the 75th percentile compared to 70.4%) were associated with higher HRSV infection incidence (IRR for ambient temperature 1.068, 95% confidence interval [CI], 1.056–1.079; IRR for relative humidity 1.045, 95% CI, 1.032–1.059). Precipitation revealed a positive association trend, and for wind speed, clear evidence of a negative association was found. Our findings provide a basic picture of the seasonality of HRSV transmission and its nonlinear association with multiple meteorological drivers in the pre-HRSV-vaccination and pre-coronavirus disease 2019 (COVID-19) era in Japan. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|