Learning grain boundary segregation energy spectra in polycrystals

Autor: Malik Wagih, Peter M. Larsen, Christopher A. Schuh
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Nature Communications, Vol 11, Iss 1, Pp 1-9 (2020)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-020-20083-6
Popis: Predicting segregation energies of alloy systems can be challenging even for a single grain boundary. Here the authors propose a machine-learning framework, which maps the local environments on a distribution of segregation energies, to predict segregation energies of alloy elements in polycrystalline materials.
Databáze: Directory of Open Access Journals