A Multi-Rate Probabilistic Slow Feature Regression Model for Dynamic Feature Learning and Industrial Soft Sensor Development

Autor: Miao Zhang, Zhiwei Wen, Le Zhou
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: IEEE Access, Vol 10, Pp 128994-129003 (2022)
Druh dokumentu: article
ISSN: 2169-3536
DOI: 10.1109/ACCESS.2022.3228048
Popis: In practical process industries, the measurements coming from different sources are collected at different sampling rates, thereby soft sensors developed using uniformly sampled measurements may result in poor prediction performance. Besides, industrial processes are inherently stochastic and most of them present dynamic characteristic. To cope with these issues, a multi-rate probabilistic slow feature regression (MR-PSFR) model is proposed in this paper for dynamic feature learning and soft sensor development in industrial processes. In the MR-PSFR, both input and output observation datasets with different sampling rates are used to extract the slow features, which can separate slowly and fast changing features and have a better interpretation of the outputs. Then, the expectation-maximization algorithm is modified to derive the model parameters of MR-PSFR and the quality prediction strategy for multi-rate processes is constructed. Finally, the proposed method is investigated through a numerical example and a real industrial process. The simulation results show that the extracted slow features better represent the intrinsic characteristics of the processes and the proposed model has better prediction performance for multi-rate dynamic processes than other methods.
Databáze: Directory of Open Access Journals