Autor: |
Guoce Xin, Terence Y. J. Zhang |
Jazyk: |
angličtina |
Rok vydání: |
2008 |
Předmět: |
|
Zdroj: |
Discrete Mathematics & Theoretical Computer Science, Vol DMTCS Proceedings vol. AJ,..., Iss Proceedings (2008) |
Druh dokumentu: |
article |
ISSN: |
1365-8050 |
DOI: |
10.46298/dmtcs.3613 |
Popis: |
Schützenberger's theorem for the ordinary RSK correspondence naturally extends to Chen et. al's correspondence for matchings and partitions. Thus the counting of bilaterally symmetric $k$-noncrossing partitions naturally arises as an analogue for involutions. In obtaining the analogous result for $3$-noncrossing partitions, we use a different technique to develop a $\mathsf{MAPLE}$ package for $2$-dimensional vacillating lattice walk enumeration problems. As an application, we find an interesting relation between two special bilaterally symmetric partitions. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|