An inventory of Alpine drought impact reports to explore past droughts in a mountain region
Autor: | R. Stephan, M. Erfurt, S. Terzi, M. Žun, B. Kristan, K. Haslinger, K. Stahl |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Natural Hazards and Earth System Sciences, Vol 21, Pp 2485-2501 (2021) |
Druh dokumentu: | article |
ISSN: | 1561-8633 1684-9981 |
DOI: | 10.5194/nhess-21-2485-2021 |
Popis: | Drought affects the European Alpine mountain region, despite a humid climate. Droughts' damaging character in the past and increasing probability in future projections call for an understanding of drought impacts in the mountain regions. The European Drought Impact report Inventory (EDII) collects text reports on negative drought impacts. This study presents a considerably updated EDII focusing on the Alpine region. This first version release of an Alpine Drought Impact report Inventory (EDIIALPS) classifies impact reports into categories covering various affected sectors and enables comparisons of the drought impact characteristics. We analysed the distribution of reported impacts on the spatial, temporal and seasonal scale and by drought type for soil moisture drought and hydrological drought. For the spatial analysis, we compared the impact data located in the Alpine region to the whole of Europe. Furthermore, we compared impact data between different climatic and altitudinal domains (the northern region vs. the southern region and the pre-Alpine region vs. the high-altitude region) and between the Alpine countries. Compared to the whole of Europe, in the Alpine region agriculture and livestock farming impacts are even more frequently reported, especially in the southern region. Public water supply is the second most relevant sector but overall less prominent compared to Europe, especially in spring when snowmelt mitigates water shortages. Impacts occur mostly in summer and early autumn, with a delay between those impacts initiated by soil moisture and those initiated by hydrological drought. The high-altitude region shows this delay the strongest. From 1975 to 2020, the number of archived reports increases, with substantially more impacts noted during the drought events of 1976, 2003, 2015 and 2018. Moreover, reported impacts diversify from agricultural dominance to multi-faceted impact types covering forestry, water quality, industry and so forth. Though EDIIALPS is biased by reporting behaviour, the region-specific results of negative drought impacts across the water-rich European mountain region demonstrate the need to move from emergency response to prevention and preparedness actions. These may be guided by EDIIALPS' insights to regional patterns, seasons and drought types. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |