Representation of Algebraic Integers as Sum of Units over the Real Quadratic Fields
Autor: | Saad A. Baddai |
---|---|
Jazyk: | Arabic<br />English |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Baghdad Science Journal, Vol 16, Iss 3(Suppl.) (2019) |
Druh dokumentu: | article |
ISSN: | 2078-8665 2411-7986 |
DOI: | 10.21123/bsj.2019.16.3(Suppl.).0781 |
Popis: | In this paper we generalize Jacobsons results by proving that any integer in is a square-free integer), belong to . All units of are generated by the fundamental unit having the forms our generalization build on using the conditions This leads us to classify the real quadratic fields into the sets Jacobsons results shows that and Sliwa confirm that and are the only real quadratic fields in . |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |