TALEN-mediated genome-editing approaches in the liverwort Marchantia polymorpha yield high efficiencies for targeted mutagenesis

Autor: Sarah Kopischke, Esther Schüßler, Felix Althoff, Sabine Zachgo
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Plant Methods, Vol 13, Iss 1, Pp 1-11 (2017)
Druh dokumentu: article
ISSN: 1746-4811
DOI: 10.1186/s13007-017-0167-5
Popis: Abstract Background The liverwort Marchantia polymorpha occupies a crucial position in land plant evolution and provides the opportunity to investigate adaptations to a terrestrial plant life style. Marchantia reverse genetic analyses have thus far been conducted by employing a homologous recombination approach, which yields an efficiency of around 3%. Availability of the characterized and suitable endogenous MpEF1α promoter prompted us to establish the TALEN gene targeting technique for Marchantia. Results Here, two different TALEN techniques, using custom and self-assembled TALEN constructs, were applied and compared. The MpNOP1 gene was selected as a candidate gene, as the respective knockout mutant has been shown to lack air chamber formation, representing an easily traceable phenotype. We demonstrate that both TALEN approaches are successful in Marchantia yielding high gene targeting efficiencies of over 20%. Investigation of selected G1 up to G4 generations proved the stability of the knockout mutants. In 392 analyzed T1 plants, no additional phenotypes were observed and only one chimeric knockout plant was detected after an extended cultivation period. Interestingly, two out of the 24 sequenced mutants harbored indels causing in-frame mutations and revealed novel Mpnop1-related phenotypes. This demonstrates the potential to detect crucial amino acids and motives of targeted proteins, which is of special interest for essential genes where full knockouts are lethal. The FastTALE™ TALEN assembly kit enables the rapid assembly and ligation of the TALEN arms within half a day. For transformations, custom and assembled constructs were subcloned into Marchantia binary vectors possessing the MpEF1α promoter. Conclusion Considering time, costs and practicability, the assembly TALEN approach represents a rapid and highly efficient gene targeting system to generate Marchantia knockout mutants, which can be further adapted for future advanced genome-editing applications.
Databáze: Directory of Open Access Journals