AXL inhibitors selected by molecular docking: Option for reducing SARS-CoV-2 entry into cells
Autor: | Galindo-Hernández Octavio, Vique-Sánchez José Luis |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Acta Pharmaceutica, Vol 72, Iss 3, Pp 329-343 (2022) |
Druh dokumentu: | article |
ISSN: | 1846-9558 86520237 |
DOI: | 10.2478/acph-2022-0024 |
Popis: | The COVID-19 pandemic is ongoing and the benefit from vaccines is still insufficient since COVID-19 continues to be dia g-nosed in vaccinated individuals. It is, therefore, necessary to propose specific pharmacological treatments against COVID-19. A new therapeutic target on the human cellular membrane is AXL (anexelekto), proposed as an independent pathway by which interaction with the S protein of SARS-CoV-2 allows the virus to enter the cell, without the participation of ACE2. AXL serves as another gate through which SARS-CoV-2 can enter cells. Therefore, any stage of COVID-19 could be ameliorated by hindering the interaction between AXL and SARS-CoV-2. This study proposes ten compounds (1–10), selected by mole-cu lar docking and using a library of nearly 500,000 compounds, to develop a new drug that will decrease the interaction of AXL with the S protein of SARS-CoV-2. These compounds have a specific potential site of interaction with AXL, between Glu59, His61, Glu70 and Ser74 amino acids. This site is necessary for the interaction of AXL with the S protein. With this, we propose to develop a new adjuvant treatment against COVID-19. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |