Autor: |
Ashutosh Vijay Kotwal, Hunter Kemeny, Zijie Yang, Jiqing Fan |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 14, Iss 1, Pp 1-15 (2024) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-024-60319-9 |
Popis: |
Abstract Image recognition is a pervasive task in many information-processing environments. We present a solution to a difficult pattern recognition problem that lies at the heart of experimental particle physics. Future experiments with very high-intensity beams will produce a spray of thousands of particles in each beam-target or beam-beam collision. Recognizing the trajectories of these particles as they traverse layers of electronic sensors is a massive image recognition task that has never been accomplished in real time. We present a real-time processing solution that is implemented in a commercial field-programmable gate array using high-level synthesis. It is an unsupervised learning algorithm that uses techniques of graph computing. A prime application is the low-latency analysis of dark-matter signatures involving metastable charged particles that manifest as disappearing tracks. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|