Autor: |
Ramandeep Behl, Alicia Cordero, Juan R. Torregrosa, Sonia Bhalla |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 9, Iss 17, p 2122 (2021) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math9172122 |
Popis: |
We used a Kurchatov-type accelerator to construct an iterative method with memory for solving nonlinear systems, with sixth-order convergence. It was developed from an initial scheme without memory, with order of convergence four. There exist few multidimensional schemes using more than one previous iterate in the very recent literature, mostly with low orders of convergence. The proposed scheme showed its efficiency and robustness in several numerical tests, where it was also compared with the existing procedures with high orders of convergence. These numerical tests included large nonlinear systems. In addition, we show that the proposed scheme has very stable qualitative behavior, by means of the analysis of an associated multidimensional, real rational function and also by means of a comparison of its basin of attraction with those of comparison methods. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|