MvGraphDTA: multi-view-based graph deep model for drug-target affinity prediction by introducing the graphs and line graphs

Autor: Xin Zeng, Kai-Yang Zhong, Pei-Yan Meng, Shu-Juan Li, Shuang-Qing Lv, Meng-Liang Wen, Yi Li
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: BMC Biology, Vol 22, Iss 1, Pp 1-13 (2024)
Druh dokumentu: article
ISSN: 1741-7007
DOI: 10.1186/s12915-024-01981-3
Popis: Abstract Background Accurately identifying drug-target affinity (DTA) plays a pivotal role in drug screening, design, and repurposing in pharmaceutical industry. It not only reduces the time, labor, and economic costs associated with biological experiments but also expedites drug development process. However, achieving the desired level of computational accuracy for DTA identification methods remains a significant challenge. Results We proposed a novel multi-view-based graph deep model known as MvGraphDTA for DTA prediction. MvGraphDTA employed a graph convolutional network (GCN) to extract the structural features from original graphs of drugs and targets, respectively. It went a step further by constructing line graphs with edges as vertices based on original graphs of drugs and targets. GCN was also used to extract the relationship features within their line graphs. To enhance the complementarity between the extracted features from original graphs and line graphs, MvGraphDTA fused the extracted multi-view features of drugs and targets, respectively. Finally, these fused features were concatenated and passed through a fully connected (FC) network to predict DTA. Conclusions During the experiments, we performed data augmentation on all the training sets used. Experimental results showed that MvGraphDTA outperformed the competitive state-of-the-art methods on benchmark datasets for DTA prediction. Additionally, we evaluated the universality and generalization performance of MvGraphDTA on additional datasets. Experimental outcomes revealed that MvGraphDTA exhibited good universality and generalization capability, making it a reliable tool for drug-target interaction prediction.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje