Autor: |
Sanghwan Cho, Min Ook Kim |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Applied Sciences, Vol 14, Iss 14, p 5992 (2024) |
Druh dokumentu: |
article |
ISSN: |
2076-3417 |
DOI: |
10.3390/app14145992 |
Popis: |
Despite extensive research on lightweight aggregate concrete (LWAC), the precise effects of different coarse aggregate types and their physical properties on the shear capacity of reinforced all lightweight aggregate concrete (ALWAC) beams remain unclear. A comprehensive understanding of how aggregates influence the shear behavior of reinforced concrete (RC) beams is essential for accurately predicting shear strength and effectively designing ALWAC structures. To advance this understanding, experiments were conducted on twelve RC beams: four made of normal-weight concrete (NWC) and eight of ALWAC. ALWAC beams exhibited more extensive and wider flexural cracks compared to NWC beams under the same loading conditions. ALWAC beams demonstrated structural performance similar to NWC beams under identical loading conditions. The cracking loads of ALWAC can be estimated through measured concrete strength, with the post-cracking behavior predominantly influenced by the tensile reinforcement. All considered design codes underestimated the shear capacity of the tested ALWAC beams, and the shear resistance estimated by EC2 corresponded more closely than other existing codes. Lastly, the limitations and future work based on the results of this study were discussed and summarized. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|