Autor: |
Qin Guo, Binlei Cai |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Electronic Research Archive, Vol 31, Iss 3, Pp 1387-1404 (2023) |
Druh dokumentu: |
article |
ISSN: |
2688-1594 |
DOI: |
10.3934/era.2023071?viewType=HTML |
Popis: |
We consider the rescaled pure greedy learning algorithm (RPGLA) with the dependent samples drawn according to a non-identical sequence of probability distributions. The generalization performance is provided by applying the independent-blocks technique and adding the drift error. We derive the satisfactory learning rate for the algorithm under the assumption that the process satisfies stationary $ \beta $-mixing, and also find that the optimal rate $ O(n^{-1}) $ can be obtained for i.i.d. processes. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|