The Sub-Riemannian Limit of Curvatures for Curves and Surfaces and a Gauss–Bonnet Theorem in the Rototranslation Group
Autor: | Haiming Liu, Jiajing Miao, Wanzhen Li, Jianyun Guan |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Journal of Mathematics, Vol 2021 (2021) |
Druh dokumentu: | article |
ISSN: | 2314-4629 2314-4785 |
DOI: | 10.1155/2021/9981442 |
Popis: | The rototranslation group ℛT is the group comprising rotations and translations of the Euclidean plane which is a 3-dimensional Lie group. In this paper, we use the Riemannian approximation scheme to compute sub-Riemannian limits of the Gaussian curvature for a Euclidean C2-smooth surface in the rototranslation group away from characteristic points and signed geodesic curvature for Euclidean C2-smooth curves on surfaces. Based on these results, we obtain a Gauss–Bonnet theorem in the rototranslation group. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |