Decompose Boolean Matrices with Correlation Clustering

Autor: László Aszalós
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Entropy, Vol 23, Iss 7, p 852 (2021)
Druh dokumentu: article
ISSN: 1099-4300
DOI: 10.3390/e23070852
Popis: One of the tasks of data science is the decomposition of large matrices in order to understand their structures. A special case of this is when we decompose relations, i.e., logical matrices. In this paper, we present a method based on the similarity of rows and columns, which uses correlation clustering to cluster the rows and columns of the matrix, facilitating the visualization of the relation by rearranging the rows and columns. In this article, we compare our method with Gunther Schmidt’s problems and solutions. Our method produces the original solutions by selecting its parameters from a small set. However, with other parameters, it provides solutions with even lower entropy.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje