On a common fixed point theorem in vector-valued b-metric spaces: Its consequences and application
Autor: | Muhammad Nazam, Aftab Hussain, Asim Asiri |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | AIMS Mathematics, Vol 8, Iss 11, Pp 26021-26044 (2023) |
Druh dokumentu: | article |
ISSN: | 20231326 2473-6988 |
DOI: | 10.3934/math.20231326?viewType=HTML |
Popis: | We introduce a Ćirić type contraction principle in a vector-valued $ b $-metric space that generalizes Perov's contraction principle. We investigate the possible conditions on the mappings $ W, E:G\rightarrow G $ ($ G $ is a non-empty set), for which these mappings admit a unique common fixed point in $ G $ subject to a nonlinear operator $ {\bf F}:\mathbb{P}^{m} \rightarrow \mathbb{R}^{m} $. We illustrate the hypothesis of our findings with examples. We consider an infectious disease model represented by the system of delay integro-differential equations and apply the obtained fixed point theorem to show the existence of a solution to this model. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |