Popis: |
Postsynaptic currents of chemical synapse are modulated by multitudinous neurotransmitters, such as acetylcholine, dopamine, glutamate, and γ-aminobutyric acid, many of which have been used in the treatment of neurological diseases. Here, based on molecular dynamics simulations and quantum chemical calculation, we propose that 30- to 45-THz photons can resonate with a variety of typical neurotransmitter molecules and make them absorb photon energy to activate the transition to high energy state, which is expected to be a new method of neural regulation. Furthermore, we verified the calculated results through experiments that THz irradiation could substantively change neuronal signal emission and enhance the frequency, amplitude, and dynamic properties of excitatory postsynaptic current and inhibitory postsynaptic current. In addition, we demonstrated the potential of neural information regulation by THz photons through 2-photon imaging in vivo. These findings are expected to improve the understanding of the physical mechanism of biological phenomena and facilitate the application of terahertz technology in neural regulation and the development of new functional materials. |