Hyperparameter Bayesian Optimization of Gaussian Process Regression Applied in Speed-Sensorless Predictive Torque Control of an Autonomous Wind Energy Conversion System

Autor: Yanis Hamoudi, Hocine Amimeur, Djamal Aouzellag, Maher G. M. Abdolrasol, Taha Selim Ustun
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Energies, Vol 16, Iss 12, p 4738 (2023)
Druh dokumentu: article
ISSN: 1996-1073
DOI: 10.3390/en16124738
Popis: This paper introduces a novel approach to speed-sensorless predictive torque control (PTC) in an autonomous wind energy conversion system, specifically utilizing an asymmetric double star induction generator (ADSIG). To achieve accurate estimation of non-linear quantities, the Gaussian Process Regression algorithm (GPR) is employed as a powerful machine learning tool for designing speed and flux estimators. To enhance the capabilities of the GPR, two improvements were implemented, (a) hyperparametric optimization through the Bayesian optimization (BO) algorithm and (b) curation of the input vector using the gray box concept, leveraging our existing knowledge of the ADSIG. Simulation results have demonstrated that the proposed GPR-PTC would remain robust and unaffected by the absence of a speed sensor, maintaining performance even under varying magnetizing inductance. This enables a reliable and cost-effective control solution.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje