Ligand presentation controls collective MSC response to matrix stress relaxation in hybrid PEG-HA hydrogels

Autor: Alexandra N. Borelli, Courtney L. Schultze, Mark W. Young, Bruce E. Kirkpatrick, Kristi S. Anseth
Jazyk: angličtina
Rok vydání: 2025
Předmět:
Zdroj: Bioactive Materials, Vol 44, Iss , Pp 152-163 (2025)
Druh dokumentu: article
ISSN: 2452-199X
DOI: 10.1016/j.bioactmat.2024.10.007
Popis: Cell interactions with the extracellular matrix (ECM) influence intracellular signaling pathways related to proliferation, differentiation, and secretion, amongst other functions. Herein, bone-marrow derived mesenchymal stromal cells (MSCs) are encapsulated in a hydrazone crosslinked hyaluronic acid (HA) hydrogel, and the extent of stress relaxation is controlled by systemic introduction of irreversible triazole crosslinks. MSCs form elongated multicellular structures within hydrogels containing RGD peptide and formulated with elastic composition slightly higher than the hydrogel percolation threshold (12 % triazole, 88 % hydrazone). A scaling analysis is presented (12 ∼Nα) to quantify cell-material interactions within these structures with the scaling exponent (α) describing either elongated (0.66) or globular (0.33) structures. Cellular interactions with the material were controlled through peptides to present integrin binding ECM cues (RGD) or cadherin binding cell-cell cues (HAVDI) and MSCs were observed to form highly elongated structures in RGD containing hydrogels (α=0.56±0.05), whereases collapsed structures were observed within HAVDI containing hydrogels (α=0.39±0.04). Finally, cytokine secretion was investigated, and a global increase in secreted cytokines was observed for collapsed structures compared to elongated. Taken together, this study presents a novel method to characterize cellular interactions within a stress relaxing hydrogel where altered cluster morphology imparts changes to cluster secretory profiles.
Databáze: Directory of Open Access Journals