Autor: |
Rückstieß Thomas, Sehnke Frank, Schaul Tom, Wierstra Daan, Sun Yi, Schmidhuber Jürgen |
Jazyk: |
angličtina |
Rok vydání: |
2010 |
Předmět: |
|
Zdroj: |
Paladyn, Vol 1, Iss 1, Pp 14-24 (2010) |
Druh dokumentu: |
article |
ISSN: |
2081-4836 |
DOI: |
10.2478/s13230-010-0002-4 |
Popis: |
This paper discusses parameter-based exploration methods for reinforcement learning. Parameter-based methods perturb parameters of a general function approximator directly, rather than adding noise to the resulting actions. Parameter-based exploration unifies reinforcement learning and black-box optimization, and has several advantages over action perturbation. We review two recent parameter-exploring algorithms: Natural Evolution Strategies and Policy Gradients with Parameter-Based Exploration. Both outperform state-of-the-art algorithms in several complex high-dimensional tasks commonly found in robot control. Furthermore, we describe how a novel exploration method, State-Dependent Exploration, can modify existing algorithms to mimic exploration in parameter space. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|