Modeling and Optimization in Resource Sharing Systems: Application to Bike-Sharing with Unequal Demands
Autor: | Xiaoting Mo, Xinglu Liu, Wai Kin (Victor) Chan |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Algorithms, Vol 14, Iss 2, p 47 (2021) |
Druh dokumentu: | article |
ISSN: | 1999-4893 |
DOI: | 10.3390/a14020047 |
Popis: | The imbalanced distribution of shared bikes in the dockless bike-sharing system (a typical example of the resource-sharing system), which may lead to potential customer churn and lost profit, gradually becomes a vital problem for bike-sharing firms and their users. To resolve the problem, we first formulate the bike-sharing system as a Markovian queueing network with higher-demand nodes and lower-demand nodes, which can provide steady-state probabilities of having a certain number of bikes at one node. A model reduction method is then designed to reduce the complexity of the proposed model. Subsequently, we adopt an operator-based relocation strategy to optimize the reduced network. The objective of the optimization model is to maximize the total profit and act as a decision-making tool for operators to determine the optimal relocation frequency. The results reveal that it is possible for most of the shared bikes to gather at one low-demand node eventually in the long run under the influence of the various arrival rates at different nodes. However, the decrease of the number of bikes at the high-demand nodes is more sensitive to the unequal demands, especially when the size of the network and the number of bikes in the system are large. It may cause a significant loss for operators, to which they should pay attention. Meanwhile, different estimated values of parameters related with revenue and cost affect the optimization results differently. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |
Abstrakt: | The imbalanced distribution of shared bikes in the dockless bike-sharing system (a typical example of the resource-sharing system), which may lead to potential customer churn and lost profit, gradually becomes a vital problem for bike-sharing firms and their users. To resolve the problem, we first formulate the bike-sharing system as a Markovian queueing network with higher-demand nodes and lower-demand nodes, which can provide steady-state probabilities of having a certain number of bikes at one node. A model reduction method is then designed to reduce the complexity of the proposed model. Subsequently, we adopt an operator-based relocation strategy to optimize the reduced network. The objective of the optimization model is to maximize the total profit and act as a decision-making tool for operators to determine the optimal relocation frequency. The results reveal that it is possible for most of the shared bikes to gather at one low-demand node eventually in the long run under the influence of the various arrival rates at different nodes. However, the decrease of the number of bikes at the high-demand nodes is more sensitive to the unequal demands, especially when the size of the network and the number of bikes in the system are large. It may cause a significant loss for operators, to which they should pay attention. Meanwhile, different estimated values of parameters related with revenue and cost affect the optimization results differently. |
---|---|
ISSN: | 19994893 |
DOI: | 10.3390/a14020047 |